大类间方差法根据图像的灰度特性寻找阙值,使分割出的图像区域之间的差别大,用于判断分割图像区域之间的差别是其各区域间的内部方差。大类间方差法极易受到噪音的影响,如阴影,但在单纯背景条件下,适用于初步的获取目标物的位置。大熵阙值法与大类间方差原理类似,将图像通过信息熵分为不同区域。信息熵在混乱无序的系统中较大,在确定有序的系统中较小,根据信息熵的特性,可将图像分割为不同的区域。
基于编码结构的图像分割网络虽然能在复杂背景及环境中基于特征分割出图像区域,不过其提取的轮廓特征依然较为粗糙,不足为真实尺寸测量提供依据,直到MaskRCNN才做到了像素级图像分割,为尺寸测量提供了依据。除此之外,MaskRCNN将目标检测和语义分割结合,对农产品尺寸测量及分类提供了指导性算法,也是目前研究优化的主要方向。
以上信息由专业从事蔬菜检测中心的安徽金标准于2025/3/9 0:01:22发布
转载请注明来源:http://nanjing.mf1288.com/ahjbzjc-2846760408.html